Natural disaster monitoring is a fundamental task to create prevention strategies, as well as to help authorities to act in the control of damages, coordinate rescues, and help victims.
Among all natural disasters, flooding is possibly the most extensive and devastating one being considered as the world's most costly type of natural hazard in terms of both economic losses and human causalities.
Although extremely important, floods are difficult to monitor, because they are highly dependent on several local conditions, such as precipitation, drainage network, and land cover.
A first and essential step towards such monitoring is based on identifying areas most vulnerable to flooding, helping authorities to focus on such regions while monitoring inundations.
In this work, we tackled such task using distinct strategies all based on ConvNets.
Specifically, we proposed novel ConvNet architectures specialized in identifying flooding areas as well as a new strategy focuses on exploiting network diversity of these ConvNets for inundation identification.
This work was considered the winner of the Flood-Detection in Satellite Images, a subtask of 2017 Multimedia Satellite Task, which was part of the traditional MediaEval Benchmark.


Code available here:

Categories: DownloadsSource codes

Related Posts


Fashion Dataset

Fashion Dataset This dataset is a composition of fashion images and associated tags and comments crawled from two fashion-related social networks, namely and The first part of this dataset (related to the Read more…


Region-based Annotated Child Pornography Dataset

This dataset is a private database that belongs to the Brazilian Federal Police. The paper "A Benchmark Methodology for Child Pornography Detection" describes the structure of the dataset. The aim of the dataset is to assess and compare the performance of child pornography detection methods.


Deep Semantic Segmentation of Mammographic Images

MIAS and INbreast are mammographic datasets for the detection and diagnosis of breast cancer. With the dawn of digital mammograms, one important preprocessing step for the tasks of detection and diagnosis is the removal of the Read more…